EMI Reduction by Extended Spread Spectrum in Switching Converter

(EMCJ WS 2015, Bangkok)

Yasunori Kobori*

Nobukazu Tsukiji**, Nobukazu Takai**, Haruo Kobayashi**

* National Institute of Technology, Oyama College **Gunma University

Outline

- 1. Background
- 2. Conventional Spread Spectrum
 - 2-1 Switching Converter2-2 Digital Spread Spectrum
- 3. Proposed Spread Spectrum
 - 3-1 M-sequence circuit
 - 3-2 Pseudo Analog Noise Generator
 - **3-3 Simulation Results**
- 4. Advanced Spread Spectrum
 - 4-1 Extended Bit Pattern with Bit Inverse
 - 4-2 Extended Bit Pattern with Bit Exchage
- 5. Conclusion

1. Background

5.0 V, 4.2 V, 3.5 V,
2.5 V, 1.2 V etc.

Many switching converters in equipment

Fig.1 background

1. Background

Outline

1. Background

2. Conventional Spread Spectrum

- 2-1 Switching Converter2-2 Digital Spread Spectrum
- 3. Proposed Spread Spectrum
 - 3-1 M-sequence circuit
 - 3-2 Pseudo Analog Noise Generator
 - **3-3 Simulation Results**

4. Advanced Spread Spectrum

- 4-1 Extended Bit Pattern with Bit Inverse
- 4-2 Extended Bit Pattern with Bit Exchange

5. Conclusion

2-1 Switching Converter

Fig.3 DC-DC Buck Converter

Spectrum of PWM signal Energy concentration at basic & harmonic frequencies fo, 2.fo, 3.fo, ...

Fig.5 Spectrum of PWM

2-2 Conventional Spread Spectrum

- * Digital Spread Spectrum
 - Phase or Position Modulation of PWM
 - \Rightarrow Spread the spectrum and

Reduce the power of fo spectrum

Fig.7 Timing Chart

* Digital Spread Spectrum

- 8~12bit Random Noise Generator (M-sequence circuit)
- More than one hundred of Shift Resistors and Selectors

Fig.8 Digital Modulation Circuit

Fig.9 Modulated Clock

Outline

1. Background

2. Conventional Spread Spectrum

2-1 Switching Converter2-2 Digital Spread Spectrum

3. Proposed Spread Spectrum

- 3-1 M-sequence circuit
- 3-2 Pseudo Analog Noise Generator
- **3-3 Simulation Results**

4. Advanced Spread Spectrum

- 4-1 Extended Bit Pattern with Bit Inverse
- 4-2 Extended Bit Pattern with Bit Exchange

5. Conclusion

3-1M-Sequence Circuit

- Digital Random Noise Generator
- Consist of n-bit counters and some Ex-OR gates
- The number of pulse levels is N=2ⁿ-1
- Primitive polynomials (ex. 3 degrees)

(a) G(s) =
$$x^3 + x^2 + 1$$

(b) G(s) = $x^3 + x + 1$

Fig.10 3-bit M-sequence Circuit (3 bit)

3-2 Pseudo Analog Noise Generator

- * Random Noise with LPF & PLL
 - Random Pattern from Digital Noise Generator

Pseudo Analog Noise (Non-periodic)

Fig.12 Frequency Modulation with Analog Noise (Image)

3-2 Pseudo Analog Noise Generator
* M-sequence + DAC ⇒ Random Pattern Generator
* LPF ⇒ Analog Smooth Signal (Periodic)
* PLL ⇒ Pseudo Analog Noise (Non-Periodic)

Fig.13 Pseudo Analog Noise with LPF & PLL 13

Switching Converter with Analog Spread Spectrum

Fig.14 Converter with Analog Spread Spectrum

Fig.15 Spread Spectrum (Image)

- Waveform of LPF Output & Voltage Ripple
 - Output ripple is 7 mVpp (< 0.2 % of Vo)
 - Waveform of ripple is similar to Output of LPF

Table 1 Parameters of Switching Converter

Vin	9.0 V	
Vo	5.0 V	
lo	0.5 A	
L	10uH	
Со	470µF	
Fck	200kHz	

3-3 Simulation Results

Fundamental Spread Spectrum (200kHz) Peak level of basic frequency is reduced (-2.4 dB) Harmonic frequency is widely spread (-9.0 dB @1MHz).

(a) Without Spread Spectrum

(b) Digital Spread Spectrum

(c) Analog Spread Spectrum

Fig.17 Comparison of Spread Spectrum

Outline

1. Background

2. Conventional Spread Spectrum

- 2-1 Switching Converter2-2 Digital Spread Spectrum
- 3. Proposed Spread Spectrum
 3-1 M-sequence circuit
 3-2 Pseudo Analog Noise Generator
 3-3 Simulation Results

4. Advanced Spread Spectrum

- 4-1 Extended Bit Pattern with Bit Inverse
- 4-2 Extended Bit Pattern with Bit Exchange

5. Conclusion

4. Advanced Spread Spectrum

4-1 Extended Bit Pattern with Bit Inverse
● Bit Operation with Bit Inverse Each Bit Pattern is different ⇒ × 8 Patterns

4. Advanced Spread Spectrum

4-1 Extended Bit Pattern with Bit Inverse

- Output noise pattern with Bit Inverse
 Periodic Length = 7 × 8 = 56 Clocks
- Harmonic Frequency Spectrum is reduced -12dB and smooth

Fig.19 Waveform of Bit Pattern Inverse

Fig.20 Spread Spectrum 19

4. Advanced Spread Spectrum

- 4-2 Extended Bit Pattern with Bit Exchange
 - Output Noise Pattern with Bit Exchange Each Bit Pattern is different $\Rightarrow \times 6$ Patterns
 - Bit Inverse & Bit Exchange $\Rightarrow 8 \times 6 = 48$ Patterns

Table 3 Bit Exchange Results

0) $Q_1 Q_2 Q_3$:	0-1-3-6-5-2-4-	(3)
A) $Q_1 Q_3 Q_2$:	0-1-5 -6-3-4-2-	(11)
B) $Q_2Q_1Q_3$:	0-2-3-5-6-1-4-	(12)
C) $Q_2Q_3Q_1$:	0-4-5-3-6-1-2-	(13)
D) $Q_3Q_1Q_2$:	0-2-6-5-3-4-1-	(14)
E) $Q_3Q_2Q_1$:	0-4-6-3-5-2-1-	(15)

Fig.21 Bit Exchange Circuit 20

Conclusion

 New EMI reduction method by extended spread spectrum with pseudo analog noise using LPF and PLL circuit
 a) Pseudo Analog Noise Generator:

- 3-bit M-sequence circuit for random pattern generator
- Extended pattern generator with Bit Inverse & Exchange
- b) Simulation Results:
 - 1) with pseudo analog noise [Period = 7 clock length]
 - Peak level of fo(200kHz): -2.4 dB (Ripple : 7 mVpp)
 - Harmonic levels (1MHz) : -9.0 dB
 - 2) with Extended pseudo analog noise [Period = 336 clock]
 - Peak level of fo(200kHz) : -3.7 dB (Ripple : 13 mVpp)
 - Harmonic levels (1MHz) : -12 dB

Thank you for your attention.